Compare papers:
Genet Asefa Gesese, Russa Biswas, Mehwish Alam, Harald Sack · Published 2022
Knowledge Graphs (KGs) are composed of structured information about a particular domain in the form of entities and relations. In addition to the structured information KGs help in facilitating interconnectivity and interoperability between different resources represented in the Linked Data Cloud. KGs have been used in a variety of applications such as entity linking, question answering, recommender systems, etc. However, KG applications suffer from high computational and storage costs. Hence, there arises the necessity for a representation able to map the high dimensional KGs into low dimensional spaces, i.e., embedding space, preserving structural as well as relational information. This paper conducts a survey of KG embedding models which not only consider the structured information contained in the form of entities and relations in a KG but also the unstructured information represented as literals such as text, numerical values, images, etc. Along with a theoretical analysis and comparison of the methods proposed so far for generating KG embeddings with literals, an empirical evaluation of the different methods under identical settings has been performed for the general task of link prediction.
Mehdi Ali, Hajira Jabeen, Charles Tapley Hoyt, Jens Lehman · Published 2022
There is an emerging trend of embedding knowledge graphs (KGs) in continuous vector spaces in order to use those for machine learning tasks. Recently, many knowledge graph embedding (KGE) models have been proposed that learn low dimensional representations while trying to maintain the structural properties of the KGs such as the similarity of nodes depending on their edges to other nodes. KGEs can be used to address tasks within KGs such as the prediction of novel links and the disambiguation of entities. They can also be used for downstream tasks like question answering and fact-checking. Overall, these tasks are relevant for the semantic web community. Despite their popularity, the reproducibility of KGE experiments and the transferability of proposed KGE models to research fields outside the machine learning community can be a major challenge. Therefore, we present the KEEN Universe, an ecosystem for knowledge graph embeddings that we have developed with a strong focus on reproducibility and transferability. The KEEN Universe currently consists of the Python packages PyKEEN (Python KnowlEdge EmbeddiNgs), BioKEEN (Biological KnowlEdge EmbeddiNgs), and the KEEN Model Zoo for sharing trained KGE models with the community.
Aspect-based similarity: