Compare papers:
Genet Asefa Gesese, Russa Biswas, Mehwish Alam, Harald Sack · Published 2022
Knowledge Graphs (KGs) are composed of structured information about a particular domain in the form of entities and relations. In addition to the structured information KGs help in facilitating interconnectivity and interoperability between different resources represented in the Linked Data Cloud. KGs have been used in a variety of applications such as entity linking, question answering, recommender systems, etc. However, KG applications suffer from high computational and storage costs. Hence, there arises the necessity for a representation able to map the high dimensional KGs into low dimensional spaces, i.e., embedding space, preserving structural as well as relational information. This paper conducts a survey of KG embedding models which not only consider the structured information contained in the form of entities and relations in a KG but also the unstructured information represented as literals such as text, numerical values, images, etc. Along with a theoretical analysis and comparison of the methods proposed so far for generating KG embeddings with literals, an empirical evaluation of the different methods under identical settings has been performed for the general task of link prediction.
Ariam Rivas, Irlán Grangel-González, Diego Collarana, Jens Lehmann, Maria-Esther Vidal · Published 2022
Industry~4.0 (I4.0) standards and standardization frameworks have been proposed with the goal of \emph{empowering interoperability} in smart factories. These standards enable the description and interaction of the main components, systems, and processes inside of a smart factory. Due to the growing number of frameworks and standards, there is an increasing need for approaches that automatically analyze the landscape of I4.0 standards. Standardization frameworks classify standards according to their functions into layers and dimensions. However, similar standards can be classified differently across the frameworks, producing, thus, interoperability conflicts among them. Semantic-based approaches that rely on ontologies and knowledge graphs, have been proposed to represent standards, known relations among them, as well as their classification according to existing frameworks. Albeit informative, the structured modeling of the I4.0 landscape only provides the foundations for detecting interoperability issues. Thus, graph-based analytical methods able to exploit knowledge encoded by these approaches, are required to uncover alignments among standards. We study the relatedness among standards and frameworks based on community analysis to discover knowledge that helps to cope with interoperability conflicts between standards. We use knowledge graph embeddings to automatically create these communities exploiting the meaning of the existing relationships. In particular, we focus on the identification of similar standards, i.e., communities of standards, and analyze their properties to detect unknown relations. We empirically evaluate our approach on a knowledge graph of I4.0 standards using the Trans$^*$ family of embedding models for knowledge graph entities. Our results are promising and suggest that relations among standards can be detected accurately.
Aspect-based similarity: