Compare papers:
Genet Asefa Gesese, Russa Biswas, Mehwish Alam, Harald Sack · Published 2022
Knowledge Graphs (KGs) are composed of structured information about a particular domain in the form of entities and relations. In addition to the structured information KGs help in facilitating interconnectivity and interoperability between different resources represented in the Linked Data Cloud. KGs have been used in a variety of applications such as entity linking, question answering, recommender systems, etc. However, KG applications suffer from high computational and storage costs. Hence, there arises the necessity for a representation able to map the high dimensional KGs into low dimensional spaces, i.e., embedding space, preserving structural as well as relational information. This paper conducts a survey of KG embedding models which not only consider the structured information contained in the form of entities and relations in a KG but also the unstructured information represented as literals such as text, numerical values, images, etc. Along with a theoretical analysis and comparison of the methods proposed so far for generating KG embeddings with literals, an empirical evaluation of the different methods under identical settings has been performed for the general task of link prediction.
Yukuo Cen, Xu Zou, Jianwei Zhang, Hongxia Yang, Jingren Zhou, Jie Tang · Published 2022
Network embedding (or graph embedding) has been widely used in many real-world applications. However, existing methods mainly focus on networks with single-typed nodes/edges and cannot scale well to handle large networks. Many real-world networks consist of billions of nodes and edges of multiple types, and each node is associated with different attributes. In this paper, we formalize the problem of embedding learning for the Attributed Multiplex Heterogeneous Network and propose a unified framework to address this problem. The framework supports both transductive and inductive learning. We also give the theoretical analysis of the proposed framework, showing its connection with previous works and proving its better expressiveness. We conduct systematical evaluations for the proposed framework on four different genres of challenging datasets: Amazon, YouTube, Twitter, and Alibaba. Experimental results demonstrate that with the learned embeddings from the proposed framework, we can achieve statistically significant improvements (e.g., 5.99-28.23% lift by F1 scores; p<<0.01, t-test) over previous state-of-the-art methods for link prediction. The framework has also been successfully deployed on the recommendation system of a worldwide leading e-commerce company, Alibaba Group. Results of the offline A/B tests on product recommendation further confirm the effectiveness and efficiency of the framework in practice.
Aspect-based similarity: